Matching

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Issue

- In SPICE, two transistors with equal dimensions and terminal voltages (and temperature) carry the same current
- In Si, the current are (slightly) mismatched
 - Why?
 - How much mismatch?
 - Fix?
 - Verification?

Origins of Mismatch

Wafer to Wafer Variations

- Wafer 1
- all NMOS fast
- all PMOS nominal
- all C nominal
- all R fast

- Wafer 2
- all NMOS slow
- all PMOS slow
- all C fast
- all R nominal

Parameter	Slow	Nominal	Fast
V _{TH}	0.5V	0.4V	0.3V
μC _{ox} (NMOS)	200 μA/V ²	250 μA/V ²	300 μA/V²
μC _{ox} (PMOS)	100 μA/V²	130 μA/V²	160 μA/V²
C _{MIM}	1.2 fF/μm ²	1 fF/μm ²	0.8 fF/µm ²
R _{poly}	80 Ω/□	70 Ω/□	60 Ω/□
R _{nwell}	1.3 kΩ/□	1 kΩ/□	0.7 kΩ/□

- Verify performance for all combination (with simulator)
- Also low/high supply and temperature

Random Variations

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Random Variations

Ref: M. Pelgrom, "Matching properties of MOS transistors," IEEE JSSC, 10/1989, pp. 1433-9.

Parameters for typical 180nm CMOS

Parameter	Value
A _{vt} (MOS)	5 mV-μm
A_{β} (MOS)	1 %-µm
A _{ΔIs/Is} (BJT)	2 %-µm
$A_{\Delta\beta/\beta}$ (BJT)	4 %-μm
$A_{\Delta C/C}$ (MIM capacitor)	1 %-µm
$A_{\Delta R/R}$ (Poly resistor)	3 %-µm

A_{vt} for 180nm CMOS

Ref: M. Pelgrom et al, "A designer's view on mismatch," Chapter 13 in Nyquist A/D Converters, Sensors, and Robustness, Springer 2012, pp. 245-67.

- Good match between heuristic model and experimental data, except
 - minimum channel length (actual length is smaller than drawn)
 - very long channel device

A_{vt} versus Gate Oxide Thickness

Ref: M. Pelgrom et al, "A designer's view on mismatch," Chapter 13 in Nyquist A/D Converters, Sensors, and Robustness, Springer 2012, pp. 245-67.

- A_{vt} increases ~1 mV×μm for every nm of gate insulator thickness
 - for well-engineered process
- But: circuits get smaller ...
- A_{vt} scaling design: e.g.
 - Outlier for 0.6µm PMOS is result of compensating implant, leading to high variability
 - beyond 0.6µm node dedicated well implant is used

Yield

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Random Mismatch - Example

What is the mismatch between two MIM capacitors with $W = L = 20 \mu m$?

$$\sigma_{\Delta C/C} = \frac{A_{\Delta C/C}}{\sqrt{20\mu m \times 20\mu m}} = \frac{1\% \times \mu m}{20\mu m} = 0.05\%$$

 \rightarrow 68.2% of all devices fabricated match to ±0.05%.

Yield

Fraction of devices that meet specification

Interval	Yield	Fraction Bad	
1σ	68.3%	1/3	- Co
2σ	95.4%	1/22	m -
3σ	99.7%	1/370	S- 34.1% 34.1%
4σ	99.99%	1/16,000	
5σ	99.999%	1/1,700,000	-3σ -2σ -1σ 0.1% 13.6% 0.1%
6σ	99.999 999 8%	1/507,000,000	50 20 10 0 10 20 50

- Large customers tolerate less than 1ppm failures
 - -6σ design
 - Testing, binning
 - Capacitor example: $1\sigma \rightarrow \pm 0.05\%$, $6\sigma \rightarrow \pm 0.3\%$,

Mismatch in Mirrors and Differential Pairs

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Mismatch in Current Mirror

Differential Pair

Verification

1. PVT

- Process, voltage, temperature
- Perform verification for all combinations on design and extracted netlist
- 2. Random variations
 - Monte-Carlo analysis

Technology Trend

V_{TH} spread for 90nm NMOS and PMOS:
 ➤ random variations comparable to slow/fast spread

Ref: M. Pelgrom et al, "A designer's view on mismatch," Chapter 13 in Nyquist A/D Converters, Sensors, and Robustness, Springer 2012, pp. 245-67.

- slow/fast spread decreases
 better process control
- random variations increase
 - smaller devices